Ameya Salvi

PHD STUDENT · AUTOMOTIVE ENGINEERING

Clemson University, 4 Research Dr, Greenville, SC 29607

Education_

Clemson University Greenville, SC

PHD AUTOMOTIVE ENGINEERING

2020 - present

2018 - 2020

· Thesis: Learning enhanced system identification and control for skid-steered wheel mobile robots

Clemson University Clemson, SC

MS MECHANICAL ENGINEERING Professional experience and coursework related to modelling and control of dynamical systems

Mumbai University

Mumbai, India

BS MECHANICAL ENGINEERING 2013 - 2017

Projects and coursework in design, thermal and manufacturing engineering

Research and Work Experience _____

Clemson University

US ARMY VIPR-GS Center, Virtual Sensor Reconstruction

Greenville, SC

GRADUATE RESEARCH ASSISTANT

2023 - present

- Implemented llava-phi3 using the Ollama wrapper for vision enhanced situational reasoning for off-road mobile robotics.
- Investigated generative AI modeling methods such as conditional diffusion for ensemble policy learning for visual navigation.
- Developed vision-based autonomy workflows using NVIDIA ISAAC Sim as a digital twining platform for Clearpath Husky.

US ARMY VIPR-GS Center, Deep Reinforcement Learning for CPS

Greenville, SC

GRADUATE RESEARCH ASSISTANT

2020 - 2023

- Formulated and evaluated learning-based methods for modeling (gaussian process regression), estimation (interactive multiple model estimation) and control (deep reinforcement learning) for off-road autonomous driving tasks.
- Developed ROS/ROS2 based CUDA enabled Docker containers for sim2real experimental evaluation of ML policies.
- Investigated the use of multibody dynamics simulators such as CoppeliaSim, Project Chrono, NVIDIA ISAAC Sim, MapleSim and Gazebo for quantifying the simulation – reality gap.
- · Coordinated interdisciplinary research groups specializing in perception, planning and controls for a holistic deployment using in-house and off-the-shelf autonomy software stacks.

ARMLab, Clemson Automotive Engineering

Greenville, SC

GRADUATE RESEARCH ASSISTANT

2020 - present

- Investigated learning based control methods for articulated robotics systems like redundant cable driven parallel robots (rCD-PRs) and robotic arms (HC10DT).
- · Advised micro-project groups for developing tools for autonomy research like HPC enabled simulators and ROS code gener-
- Provided logistical and technical support for various robot platforms and numerous small-, mid- and full-scale vehicles for autonomy research.

Industry

Proterra Greenville, SC

SUMMER INTERN, THERMAL ENGINEERING

Summer 2019

- · Assisted mechanical design and development of auxiliary heating and HVAC systems for different EV product versions.
- Supported onboard diagnostics and troubleshooting with CAN Trace analysis using NEXQIC OBD tools & PCAN Explorer.
- Designed test bench for performance testing of electric heaters for auxiliary heating for various energy cycles.

Zeuva Technologies Mumbai, India

- MECHANICAL ENGINEER

 2017 2018

 Developed mathematical models for Li-ion battery pack for electric motorcycles using for investigating thermal runaway.
- Assisted electrical team to develop packaging solutions for all the electro-mechanical products to achieve IP68.
- Analyzed the impact of thermo-electrics as a temperature regulation solution for EV battery packs.

Teaching Experience _

COURSES

Clemson University, Automotive Engineering

GRADUATE TEACHING ASSISTANT, AUTONOMY SCIENCE AND SYSTEMS

Spring 2022

- Assist with curating and delivering labs for graduate level robotics course offered by Dr. Venkat Krovi.
- Set and grade student course assignments for topics ranging in robot perception, SLAM, motion planning and control.
- Provide office and recitation hours for student support (both theory and practicals).

Clemson University, Mechanical Engineering

GRADUATE GRADING ASSISTANT, MODELING AND ANALYSIS OF DYNAMICAL SYSTEMS

Spring 2019

- · Assist with assignment grading for undergraduate dynamics course offered by Dr. Phanindra Tallapragada.
- · Course covered junior level concepts for modeling dynamical systems with focus on mechanical systems.

RESEARCH MENTORING

Graduate level

AWS DEEPRACER LEAGUE Fall 2021

Advised group of three students for competing in the virtual AWS Deepracer league for racing scaled vehicle with deep reinforcement learning based control.

MATHWORKS ROS CODE GENERATION

Spring 2022

• Supported two students for exploring Mathworks-ROS toolchain for generating and deploying ROS code for TurtleBots.

CONTAINERIZED SIMULATION WITH HPC

2022-present

Advised two students for leveraging ROS enabled docker containers for running compute heavy multi-body dynamics simulators on Palmetto Cluster (Clemson's super-compute cluster).

High-school/ Undergraduate level

GOVERNORS SCHOOL FOR SCIENCE AND MATH, INTERN

Summer 2022

• Advised high-school summer intern for exploring basics of design and development of robotic systems.

Publications _____

PUBLISHED

- **Salvi, A.**, Buzhardt, J., Tallapragada, P., Krovi, V., Smereka, J.M., Brudnak, M. 2022. Virtual Evaluation of Deep Learning Techniques for Vision-Based Trajectory Tracking. SAE International Journal of Advances and Current Practices in Mobility, 2022-01-0369: 326-334
- **Salvi, A.**, Coleman, J., Buzhardt, J., Krovi, V., Tallapragada, P. 2022. Stabilization of Vertical Motion of a Vehicle on Bumpy Terrain using Deep Reinforcement Learning. 2022 Modeling, Estimation and Controls Conference.
- Raman, A., **Salvi, A.**, Schmid, M., Krovi, V. 2023. Reinforcement Learning Control of a Reconfigurable Planar Cable Driven Parallel Manipulator. 2023 International Conference on Robotics and Automation (ICRA).

- **Salvi, A.**, Buzhardt, J., Tallapragada, P., Krovi, V., Brudnak, M., Smereka, J.M. Deep Reinforcement Learning for Simultaneous Path Planning and stabilization of Off-road Vehicles. 2021 NDIA Ground Vehicles System Engineering and Technology Symposium.
- Jadhav, S.D., **Salvi, A.**, Kosaraju, K.C, Smereka, J., Brudnak, M., Krovi, V., Gorsich, D. 2023. Containerization Approach for High-Fidelity Terramechanics Simulations. 2023 WCX SAE World Congress Experience.
- Mehta, D., **Salvi, A.**, Krovi, V. 2024. Rough Terrain Path Tracking of an Ackermann Steered Platform using Hybrid Deep Reinforcement Learning. 2024 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.
- **Salvi, A.**, Ala, P.S.K., Smereka, J., Brudnak, M., Gorsich, D., Schmid, M., Krovi, V. Online identification of skidding modes with interactive multiple model estimation. 2025 International Conference on Robotics and Automation (ICRA) (Accepted). https://arxiv.org/abs/2409.20554
- Varpe, H., Coleman, J., **Salvi, A.**, Smereka, J., Brudnak, M., Gorsich, D., Krovi, V. Containerization enhanced systems integration for robotics code development and deployment. 2025 SAE WCX (Accepted).

In Review

- **Salvi, A.**, Krovi, V. Experimental investigation of pose informed reinforcement learning for skid-steered visual navigation. (Journal Article)
- **Salvi, A.**, Brudnak, M., Smereka, J., Schmid, M., Krovi, V. Characterizing gaussian mixture of motion modes for skid-steer state estimation. (Letter)
- Ala, P.S.K., **Salvi, A.**, Krovi, V., Schmid, M. Physics constrained learning of stochastic characteristics. (Conference Paper)

Presentations		

INVITED TALKS

- Spring 2023. Opportunities and Challenges in Robot Autonomy. Invited talk: MCT's RGIT, Mumbai, India (Webinar)
- Fall 2024. Learning enhanced system identification and control for skid-steered robots. Invited presentation: 2024 Modeling, Estimation and Controls Conference, Chicago.

CONTRIBUTED PRESENTATIONS

- **Salvi, A**. 2024. Applied Reinforcement Learning for Autonomous Systems. Departmental seminar: Clemson University Department of Automotive Engineering, Greenville, South Carolina.
- **Salvi, A.**, Krovi,V. 2022. Virtual Evaluation of Deep Learning Techniques for Vision-Based Trajectory Tracking. Oral presentation: 2022 SAE WCX, Detroit, Michigan.
- **Salvi, A.**, Coleman, J., Buzhardt, J., Krovi,V., Tallapragada, P. 2022. Stabilization of Vertical Motion of a Vehicle on Bumpy Terrain using Deep Reinforcement Learning. Oral presentation: 2022 Modeling, Estimation and Controls Conference, New Jersey.
- **Salvi, A.**, Jadhav, S., Krovi, V. 2023. Containerization Approach for High-Fidelity Terramechanics Simulations. Oral presentation: 2023 SAE WCX, Detroit, Michigan.

Awards, Fellowships, & Grants .	

2024 Travel Grant, Clemson Graduate Travel Grant Service

Outreach & Professional Development _____

SERVICE AND OUTREACH

2023-2024 Society of Doctoral Students in Automotive Engineering (SDSAE), Treasurer

PEER REVIEW

2023 International Conference on Robotics and Automation (ICRA).

PROFESSIONAL MEMBERSHIPS

IEEE Robotics and Automation Society (IEEE RAS).

Skills_____

- **Python**: StableBaselines3 / OpenAI Gym [RL Policies], PyTorch [Conditional Diffusion], scikit-learn [Gaussian Mixture Models]
- C++: ROS/ROS2 [Estimation and Control]
- Docker Containers: LLM/VLM Deployment, Code integration, CI-CD pipelines
- AWS: RoboMaker, DeepRacer
- Robot Simulators: Gazebo, CoppeliaSim, NVIDIA ISAAC Sim, Project Chrono, MapleSim, MATLAB/Simulink